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Self-Supervised Learning

• Supervised Learning(ImageNet)
• Need labels for training the network.

• The labels only can be obtained by human annotator.

• So, annotating is very expensive or sometimes impossible.

• Self-Supervised Learning 
• A form of unsupervised learning where the data itself provides the supervision

• Namely, it is able to automatically obtain labels for specific task.
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Relationship with Image Retrieval

• These days, Deep features are widely used for Image Retrieval 
thanks to its performance
• Ex) Neural codes for Image Retrieval(ECCV 14).
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Relationship with Image Retrieval

• In the class, we also saw performance improvement when fine-tuning with 
specific dataset.

• For fine-tuning with specific dataset, labels are necessary
since it is performed in a supervised manner.

• Therefore, this unsupervised technique will be useful to cheap fine-tuning for 
image retrieval.
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Figure in the class…



Main Idea

7



Learning to Predict Relative Position

• What is the task of predicting relative position?

Where is the relative position of red box based 
on blue box?, upper-left? upper-right?
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Learning to Predict Relative Position

• What is the task of predicting relative position?

- People can easily answer this relative position task. 

- This is hard if you don’t know what a cat is, but easy if you know its semantic.

- So, If the machine do this task well, then we can think the machine is able to capture the 
semantic information.
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How does child learn from the puzzle game?



Problem Formulation for Machine

• Interpreting the relative position task as classification problem(8 classes)

Upper-right
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Task Sequence for Training Network 

Carl Doersch’s slide11

Randomly Sample Patch
Sample Second Patch

CNN CNN

Classifier

Generate classification loss and update 
the network via backpropagation



Avoiding trivial solutions

• For easily solving this task, the machine is likely to capture boundary patterns 
or textures rather than semantic information as a cue.
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Include a gap

Jitter the patch locations

Boundary pattern

Carl Doersch’s slide



Experiments & Results
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Network Architecture

• They use quite simple architecture that is manually designed

• Network is learned from scratch
without any pre-training

• Training with ImageNet

• Remove domain-specific layer 
when applying to other domain.
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A relatively small # of layers 
compared to VGG and Alexnet.

Tied Weights



Nearest Neighbors

• Nearest neighbors of specific patches.(Thanks to capturing semantics)
TheirsInput Random Initialization ImageNet AlexNet



Object Detection

• Pascal VOC-2007 dataset

….

Unsupervised pre-training and 
supervised fine-tuning for Pascal VOC

Only supervised training 
from scratch

Boosting by 6%



Thank you!!
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