Unsupervised Visual Representation Learning by Context Prediction, ICCV 15

2018/10/25 20173130 Jaeyoon Kim

Table of Contents

- Introduction
 - Self-Supervised Learning
 - Relationship with Image Retrieval
- Main Idea

• Experiment & Result

Introduction

- -Self-Supervised Learning
- -Relationship with Image Retrieval

Self-Supervised Learning

- Supervised Learning(ImageNet)
 - Need labels for training the network.
 - The labels only can be obtained by human annotator.
 - So, annotating is very expensive or sometimes impossible.

- Self-Supervised Learning
 - A form of unsupervised learning where the data itself provides the supervision
 - Namely, it is able to automatically obtain labels for specific task.

Relationship with Image Retrieval

- These days, Deep features are widely used for Image Retrieval thanks to its performance
 - Ex) Neural codes for Image Retrieval(ECCV 14).

Relationship with Image Retrieval

- In the class, we also saw performance improvement when fine-tuning with specific dataset.
- For fine-tuning with specific dataset, labels are necessary since it is performed in a supervised manner.
- Therefore, this unsupervised technique will be useful to cheap fine-tuning for image retrieval.

Figure in the class...

	[0] 0001	0.0.0	0.011	U	5.55
Neura	d codes to	rained o	n ILSVRC	7.	CG.
Layer 5	9216	0.389		0.690*	3.09
Layer 6	4096	0.435	0.392	0.749*	3.43
Layer 7	4096	0.430	/ - N	0.736*	3.39
After retra	ining on	the Lan	dmarks data	set	2-0
Layer 5	9216	0.387	/	0.674*	2.99
Layer 6	4096	0.545	0.512	0.793*	3.29
Layer 7	4096	0.538		0.764*	3.19
After retraining o	n turntal	ole view	s (Multi-viev	v RGB-D)
Layer 5	9216	0.348	<i>L</i> –	0.682*	3.13
Layer 6	4096	0.393	0.351	0.754*	3.56
Layer 7	4096	0.362		0.730*	3.53

Main Idea

Learning to Predict Relative Position

What is the task of predicting relative position?

Learning to Predict Relative Position

- What is the task of predicting relative position?
 - People can easily answer this relative position task.
 - This is hard if you don't know what a cat is, but easy if you know its semantic.
 - So, If the machine do this task well, then we can think the machine is able to capture the semantic information.

Question 1:

How does child learn from the puzzle game?

Cropped from 중앙일보

Problem Formulation for Machine

• Interpreting the relative position task as classification problem(8 classes)

$$\rightarrow$$
 X = (\bigcirc , \bigcirc); Y = 3

Task Sequence for Training Network

Avoiding trivial solutions

 For easily solving this task, the machine is likely to capture boundary patterns or textures rather than semantic information as a cue.

Experiments & Results

Network Architecture

- They use quite simple architecture that is manually designed
- Network is learned from scratch without any pre-training
- Training with ImageNet
- Remove domain-specific layer when applying to other domain.

A relatively small # of layers compared to VGG and Alexnet.

Nearest Neighbors

Nearest neighbors of specific patches.(Thanks to capturing semantics)
Input Theirs Random Initialization ImageNet AlexNet

Object Detection

• Pascal VOC-2007 dataset

Only supervised training from scratch

VOC-2007 Test	aero	bike	bird	boat		mAP
DPM-v5[17]	33.2	60.3	10.2	16.1	-	33.7
[8] w/o context	52.6	52.6	19.2	25.4	·	38.5
Regionlets[58]	54.2	52.0	20.3	24.0	-	41.7
Scratch-R-CNN[2]	49.9	60.6	24.7	23.7	• • • •	40.7
Scratch-Ours	52.6	60.5	23.8	24.3		39.8
Ours-projection	58.4	62.8	33.5	27.7	-	45.7

Unsupervised pre-training and supervised fine-tuning for Pascal VOC

Boosting by 6%

Thank you!!